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We analyze the proper inclusion of electric-field-induced spin splittings in the framework of the envelope
function approximation. We argue that the Rashba effect should be included in the form of a macroscopic
potential as diagonal terms in a multiband approach rather than the commonly used Rashba term dependent on
k and electric field. It is pointed out that the expectation value of the electric field in a subband is sometimes
not unique because the expectation values can even have opposite signs for the spin-split subband components.
Symmetric quantum wells with Dresselhaus terms and the influence of the interfaces on the spin splitting are
also discussed. We apply a well established multiband approach to wide modulation-doped InGaSb quantum
wells with strong built-in electric fields in the interface regions. We demonstrate an efficient mechanism for
switching on and off the Rashba splitting with an electric field being an order of magnitude smaller than the
local built-in field that determines the Rashba splitting. The implications of our findings for spintronic devices,
in particular the Datta-Das spin transistor and proposed modifications of it, are discussed.
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I. INTRODUCTION

The interaction of a spin with a magnetic field or mag-
netic ions has been studied extensively over the years. A
surprisingly efficient mechanism to produce a spin splitting
is utilizing the combination of inversion asymmetry and
spin-orbit interaction.1 One convenient way to control the
spin splitting is the Rashba effect which results from struc-
ture inversion asymmetry �SIA�.2 An applied or built-in mac-
roscopic electric field is seen in the frame of a moving elec-
tron as having a magnetic-field component and yields a spin
splitting. In this way one can utilize many of the mechanisms
from conventional electronics which is mainly controlled by
electric fields. The idea of using the spin of the carriers in
addition to its charge has resulted in a research area called
spintronics.3 Another spin splitting mechanism resulting
from the lack of inversion symmetry of the zinc-blende lat-
tice �bulk inversion asymmetry �BIA�� is called the Dressel-
haus effect.4 Both the Rashba and the Dresselhaus effects are
frequently included via terms linear in the wave vector k.
However, they are the lowest-order terms of more accurate
expressions that are obtained from multiband envelope func-
tion theory.1

In Sec. II we will recapitulate the foundations of the com-
monly used envelope function approximation5,6 in order to
set the ground for an analysis of the proper inclusion of SIA
and BIA within the framework of this approximation. We
make here the important distinction between slowly and rap-
idly varying potentials. In Sec. III we apply the multiband
theory to an interesting system, wide n-type modulation-
doped �MD� quantum wells �QWs� with strongly nonuniform
electric fields. Here there are strong built-in electric fields of
opposite signs at the two interfaces and one can expect a
strong Rashba effect. It has frequently been assumed that one
needs a strong applied bias to get a substantial Rashba split-
ting but interesting things can happen also for small or mod-
erate bias. We show how the built-in electric fields in

modulation-doped quantum wells can be utilized while ap-
plying a much smaller external field. For very small asym-
metry interesting anticrossing phenomena occur. Further-
more, the spin splitting due to the Dresselhaus effect in
symmetric quantum wells is found to be qualitatively differ-
ent in modulation-doped quantum wells compared to square
wells. In Sec. IV we discuss the implications of our results
for spintronic devices, in particular the Datta-Das spin field
effect transistor.7 It has for a long time been considered as a
prototype of a spintronic device but unfortunately the efforts
to implement it in practice have not yet been very successful.
Finally, in Sec. V we discuss the results and conclude.

II. THEORY

The envelope function approximation �EFA� has been
widely used during several decades. Under the name
effective-mass theory, it was first applied to shallow-impurity
states in bulk semiconductors.8,9 The starting point is that the
problem with the band structure in the pure bulk material is
assumed to have been solved. According to Bloch’s theorem
the total wave function for band n is given by

�nk�r� = eik·runk�r� , �1�

where unk�r� has the periodicity of the lattice. We then intro-
duce a perturbation U�r�. An essential assumption in the
derivation is that it should be slowly varying on the scale of
the lattice constant. This assumption does not always hold in
the cases where the EFA has been applied. The advantage of
the EFA is that one can avoid the explicit inclusion of the cell
periodic potential. Only the slowly varying perturbation U�r�
enters a Schrödinger-like equation. With the perturbation the
total wave function can be expanded
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��r� = �
n

fn�r�unk�r� , �2�

where the summation is over all the energy bands. fn�r� is
called an envelope function and the EFA gives a simple pre-
scription for the effective Hamiltonian operating on the en-
velope function fn only,5,6

H = E�− i�� + U�r� . �3�

The kinetic-energy operator E is obtained from the bulk
band structure E�k�. In general it is a matrix whose eigen-
values gives the energy-band dispersion in the bulk. For the
perturbed problem k is replaced by −i�, where � is the
gradient operator. In the case of a quantum well grown along
the z direction, it is sufficient to replace kz by the operator
−i� /�z while kx and ky remain good quantum numbers. The
perturbation potential U�r� is added along the diagonal of the
matrix.

For the impurity case the potential is not slowly varying
in the unit cell containing the impurity. For s states having a
finite amplitude at the origin, this sometimes gives important
deviations �often called central-cell corrections� from the
predictions of the EFA in its simplest form.10 The ground
state for a donor in Si is, for example, split up into three
levels where the energy separation between these levels can
be comparable to the predicted ground-state energy. For p
and d states in Si the EFA works excellently and it also
works well for the ground state in direct-gap
semiconductors.11

The EFA has also been used frequently for quantum well
heterostructures. Here the potential changes rapidly near the
interface between two materials. The range of this potential
change is of the order of the lattice constant. Thus, at first
sight, it appears that the EFA would not be applicable. In
spite of this, the agreement between its predictions and ex-
perimental results has turned out to be quite good if the EFA
is applied properly without unnecessary approximations. The
reason for this was examined by Burt12 in a series of papers
and led to a new set of boundary conditions13,14 nowadays
called the Burt-Foreman boundary conditions. These bound-
ary conditions were first derived for the 6�6 Hamiltonian
describing the valence bands13 and later a prescription for
extending it to the 8�8 Hamiltonian including the conduc-
tion band was given.14 Previously it was common to symme-
trize the order between operators and spatially varying pa-
rameters but the Burt-Foreman boundary conditions were
derived with consideration of the cell-periodic wave func-
tions unk�r�. Meney et al.15 analyzed different envelope func-
tion approaches and found support for the Burt-Foreman
boundary conditions. Burt’s analysis also explained why the
EFA works quite well even for narrow quantum wells. How-
ever, it should be kept in mind that caution is necessary when
applying the EFA to interface regions. In the EFA the inter-
faces have usually been taken as abrupt steps. A rapidly but
continuously varying potential has also been considered by
Stern and Das Sarma16 but the influence on the subband en-
ergies was found to be quite small.

The summation in Eq. �2� should in principle be over all
the bands. In practice one selects a finite number of impor-

tant bands whose interaction is included exactly in the matrix
while the “remote” bands are included perturbatively.17 A
larger number of bands included in the matrix gives an ac-
curate description in a larger k range. A common choice that
we apply in this paper is to include the conduction, heavy-
hole, light-hole, and split-off bands in an 8�8 matrix. For a
symmetric structure this includes a twofold spin degeneracy.

For even more accurate results, 14�14 and 16�16 ma-
trices have been considered.18 Wissinger et al.19 have per-
formed calculations for an asymmetric GaAs quantum well
both with the 8�8 and the 14�14 matrices, and compared
to Raman-scattering experiments.20 The deviation between
the two models was rather small and comparable to the de-
viation from the experimental results. In the present case we
consider InGaSb with a small band gap where the 8�8 ma-
trix is expected to be a good approximation. On the other
hand, it can be sufficient to use 6�6 matrices in which the
conduction band or the split-off band is among the remote
bands. The frequently applied Luttinger-Kohn Hamiltonian5,6

includes the heavy-hole and light-hole bands in a 4�4 ma-
trix. For a description of electron subbands, it is convenient
to use a one-band �two-component� approximation in which
all the other bands are considered as remote and included via
a modification of the free-electron mass to an effective mass.
As we will see below, inclusion of spin effects in a one-band
model leads to some complications.

The recapitulation above of the essence of the EFA serves
as the basis for analyzing the inclusion of asymmetry-
induced spin phenomena. The inclusion of the Dresselhaus
effect4 seems clear. It stems from the microscopic structure
of the bulk material, influences the cell-periodic part unk of
the wave function, and results in a modified bulk band struc-
ture. Thus it is appropriate to include it as k-dependent terms
in the matrix which, after the replacement k→−i�, becomes
the kinetic-energy operator. Several terms of different order
in k enter the 8�8 Hamiltonian.1 For electron subbands the
lowest-order term is linear in k:

HD = ��kx�x − ky�y� , �4�

where �x and �y are Pauli matrices, and � is a material
constant giving the strength of the Dresselhaus effect.

The inclusion of the Rashba effect2 is less uncontrover-
sial. It stems from a slowly varying macroscopic electric
field and, according to the principles of the EFA, it should be
included as a z-dependent potential along the diagonal of a
matrix of sufficient size. The Rashba effect in p-channel Si
metal-oxide-semiconductor field-effect transistor �MOSFET�
structures was already included in this way in the 1970s and
good agreement with experiment was found.21 Using a multi-
band matrix for the kinetic energy, the inclusion of an asym-
metric potential results in a spin splitting for finite values of
the in-plane wave vector without inclusion of any special
k-dependent terms �cf. Eq. �5� below�. The spin-orbit inter-
action is implicitly included via the coefficients of the
k-dependent elements in the matrix. They contain matrix el-
ements of the spin-orbit interaction with respect to the cell-
periodic wave functions unk and can be evaluated
theoretically.4 However, a higher accuracy can often be ob-
tained from cyclotron resonance experiments,22 and in prac-
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tice experimentally determined effective masses and Lut-
tinger parameters6 are inserted if they are available.

Cyclotron resonance experiments for a two-dimensional
hole gas at a modulation-doped GaAs/AlGaAs interface were
performed by Störmer et al.23 The roughly triangular poten-
tial with a strong Rashba effect gave rise to two clearly dif-
ferent masses ascribed to the two components of the spin-
split heavy-hole subband. These results were in very good
agreement with calculations with the Luttinger-Kohn Hamil-
tonian, where the measurable energies of the allowed
Landau-level transitions were explicitly calculated.24

An alternative to the numerical solution of a multiband
problem with suitable boundary conditions is a process
called “downfolding.” Starting from a multiband matrix, one
can derive various 2�2 Hamiltonians.25–27 The commonly
used Rashba term can be derived as the lowest-order term.1

For the electric field in the z direction, it becomes2

HR = ��kx�y − ky�x� . �5�

Here � is often used as an input parameter taken from ex-
periment. Several experiments �see, e.g., Refs. 20, 28, and
29� have aimed at determining this Rashba coefficient for
different materials. Various theoretical expressions have been
derived for �. A simple expression that we will use as a
reference is25

� =
�2e��2Eg + ��

2mEg�Eg + ���3Eg + 2��
��� , �6�

where ��� is the expectation value of electric field in the
quantum well and the barriers.

The Rashba term is not really consistent with the prin-
ciples of the EFA. It is a kind of hybrid including both the
wave vector k and the potential. The problem arises from the
fact that the s-like conduction band gets its spin-orbit cou-
pling from the interaction with the valence bands, which are
included in this approximation among the “remote” bands. A
further problem is that Eq. �6� implicitly assumes that the
electron subband has a well-defined expectation value but as
will be discussed below, the two components of the spin-split
subband �henceforth denoted spin subbands� can have clearly
different expectation values.

A special problem is how the interfaces of a quantum well
should be included. In an asymmetric quantum well the pen-
etration of the wave function into the left and right barriers
becomes different. At a first glance it seems natural to treat
the complete conduction-band profile as the relevant poten-
tial. Zawadzki and Pfeffer26 have included the conduction-
band offsets in ��� �cf. Eq. �6�� and denoted it the “average
electric field.” Using the fact that no force acts on a bound
state, it has been argued1,26 that the contribution from the
interfaces would largely cancel that of the electric field in the
quantum well. However, in this respect it is important to
distinguish between the total wave function and the envelope
functions for which this argument does not necessarily hold.
The different effective masses in well and barrier, and spin
dependent boundary conditions make this average electric
field yield a nonzero but small contribution to the Rashba
spin splitting.

Lassnig27 argued that the valence-band profile, including
the band offsets, determines the Rashba effect for conduction
electrons. This gives an interface contribution of the same
sign as that of the electric field in the quantum well and
barriers. This interface contribution has been evaluated ana-
lytically by downfolding the other bands on the conduction
band and resulted in matrix elements of the steplike valence-
band edge.26 However, this approach of treating the inter-
faces like infinite electric fields seems dubious against the
discussion above, where it was pointed out that the interfaces
are a weak point in the EFA. A crucial nontrivial factor in the
downfolding procedure is how the order between differential
operators and spatially varying material parameters should
be chosen to be compatible with the Burt-Foreman boundary
conditions.13,14 So far downfolding approaches have usually
used the ad hoc operator symmetrization that many workers
have abandoned in multiband approaches. We will analyze
the interface contribution below in our multiband approach
using Eqs. �5� and �6�.

This interface contribution is fundamentally different
from another interface contribution where the microscopic
structure at the interface is taken into account as an addi-
tional source of inversion asymmetry. The proper inclusion
of this short-range potential in the framework of envelope
function theory is not trivial and has been subject to debate.30

The effect is particularly strong in “no-common-atom inter-
faces” such as InAs/GaSb where the two constituents have
no atom in common.31 We have neglected it in the present
calculations.

Equations �5� and �6� predict a linear increase in the
Rashba spin splitting with the in-plane wave vector k. Nu-
merical results25,32 give a Rashba splitting that is nonlinear
and can even be nonmonotonic. Yang and Chang32 have re-
cently published numerical and approximate analytical solu-
tions to the Rashba effect. By inserting the actual subband
energy ��k� instead of the bulk band-edge energies as in
simpler models, their analytical model qualitatively repro-
duces the nonlinear k dependence. However, the analytical
model overestimates the spin splitting. Their numerical re-
sults for an In0.53Ga0.47As quantum well between
In0.52Al0.48As barriers agree very well with what we obtain in
our approach. The quantitative agreement for
Hg0.74Cd0.26Te /HgTe structures is less good but the qualita-
tive behavior of an increase followed by a decrease in the
spin splitting is reproduced. We find a similar nonmonotonic
behavior for an InGaSb/InAlSb structure with the same com-
position as in this paper but with a uniform electric field. On
the other hand, for a GaAs/AlGaAs quantum well we find a
monotonic but clearly nonlinear behavior, in agreement with
Ref. 25. This is consistent with the explanation32 that the
nonmonotonic k dependence is caused by the increased en-
ergy separation to the light-hole and split-off bands, an effect
that is less pronounced in GaAs with a fairly large band gap.
It can be noted that the dependence of �E on k is similar to
the dependence for holes in Ref. 33 of �k at the optimal
energy on the electric field which was explained in a similar
way.

We have started from the properties of the bulk materials
and, via the boundary conditions, obtained the subband dis-
persions. An alternative approach is to solve the subband
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problem for k=0 and expand the wave functions for finite k
in eigenfunctions for k=0 �the mini-k ·p method�.34 This ap-
proach can be illuminating also for spin phenomena.1 For a
modulation-doped interface it was found that, however, the
convergence with respect to number of basis functions was
surprisingly slow.35

III. RESULTS

We here consider an interesting system for studying spin
effects, an n-type wide modulation-doped quantum well. Due
to the attraction to the ionized donors in the barriers, we
obtain two weakly interacting electron gases mainly local-
ized to the interface regions. The Rashba effect has often
been studied experimentally and theoretically in structures
where the electric field is uniform or close to uniform. In
wide modulation-doped quantum wells, the electric field is
strongly nonuniform �see Fig. 1�a��. In each interface region
there is a strong electric field which, according to Poisson’s
law, is proportional to the charge transferred from the donors
in the barrier to the quantum well. This field is capable of
producing a substantial Rashba effect.

The modulation-doped quantum well is a very versatile
system. The degree of interaction between the electron gases
can be controlled by the well width and the carrier concen-
tration. The asymmetry can be regulated by an applied bias
or by choosing unequal spacer layer widths.

In this paper we consider an 80 nm wide n-type
In0.74Ga0.26Sb quantum well with In0.7Al0.3Sb barriers. The
growth direction is �001�. The input parameters are given in
Table I. Among the common III-V semiconductors InSb has
the strongest spin-orbit coupling. By mixing in Ga and Al,
respectively, we obtain a quantum well with an almost
equally strong spin-orbit coupling. This InGaSb/InAlSb sys-
tem has recently been studied experimentally by Akabori et
al.36 Similar effects should occur also for smaller well widths
but the effects we want to display become quite clear for a
well width of 80 nm. We here make a much more thorough
analysis than in a recent preliminary paper.37

We use the well established approach with an 8�8 matrix
approach with a minor modification �see Table Caption I� of
the matrix given as Table C.8 in Ref. 1. We apply the Burt-
Foreman boundary conditions,12–14 and to avoid spurious so-
lutions, we use a quadrature method in which unphysically
large k values do not enter.38 The subband problem is solved
self-consistently in the Hartree approximation.

For reference we first consider a symmetric quantum well.
If we, for the moment, ignore the Dresselhaus effect, we
have a ground state with a symmetric wave function and a
small energy separation to an excited state with an antisym-
metric wave function. If the modulation-doped quantum well
is wide enough that the electron gases can be considered as
noninteracting, we seem to have a paradox. Each electron
gas is in a strongly asymmetric potential and a strong Rashba
effect can be expected. On the other hand, if the quantum
well is considered as a whole, the potential is symmetric and
a twofold spin degeneracy should result �see Fig. 1�a��. This
was sorted out previously39 for a p-type quantum well, where
the Rashba effect can be made several orders of magnitude

larger than for electrons �cf. Ref. 33�. However, the qualita-
tive features are the same for the n-type quantum well. We
recapitulate here the essentials and refer to Ref. 39 for de-
tails.

First it should be noted that the signs of the electric fields
at the interfaces are opposite to each other. If we label the
upper spin subband at the left interface by spin up, the cor-
responding spin subband at the right interface should be la-
beled spin down. Looking now at the whole quantum well
with two electron gases, the lower spin subband has equal
amounts of spin up and spin down, and the twofold spin
degeneracy expected for a symmetric potential prevails
�lower subband structure in Fig. 1�a��. This implies that what
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FIG. 1. �Color online� Schematic subband dispersions and
conduction-band profiles for n-type MD quantum wells. The num-
bers in parentheses denote the degeneracy of the subbands for k
�0 and k=0. In these figures the Dresselhaus splitting has been
ignored. �a� Here the well is wide enough that the two electron
gases at the interfaces can be considered as noninteracting. To the
left and the right we display the subband dispersions when the
interface regions are considered separately. The middle figure
shows the case when the quantum well is considered as a whole. �b�
Symmetric MD quantum well of intermediate width. The previous
fourfold degeneracy at k=0 partially lifted due to the interaction
between the electron gases. �c� Asymmetric MD quantum well. Due
to the overall asymmetry the degeneracy is lifted for k�0.
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looks like a spin-split subband in the single interface case
should actually be considered here as two separate subbands.
At k=0 we have a fourfold degeneracy because we have two
spin directions and two electron gases. If we now consider a
narrower but still symmetric quantum well such that the elec-
tron gases start to interact, the main and somewhat unex-
pected effect is that the degeneracy at k=0 is partially lifted,
and for all k values, we have two closely spaced subbands,
each with a twofold spin degeneracy �Fig. 1�b��.

This effect can possibly be related to the splitting recently
obtained by Bernardes et al.,40 who derived some off-
diagonal matrix elements between wave functions of even
and odd parity. This gives rise to a splitting qualitatively
similar to the splitting described above when the electron �or
hole� gases start to interact. However, the mechanism for the
splitting derived in Ref. 40 is the spin-orbit interaction. Since
well widths and other input parameters are not given in this
paper, we cannot investigate if this effect is implicitly in-
cluded in our multiband approach.

The twofold spin degeneracy becomes lifted for finite k if
the potential of the quantum well is made asymmetric �Fig.
1�c��. This is the case treated in this paper. The behavior
described above is confirmed by numerical calculations.39

We next include the Dresselhaus terms in the matrix but
keep the quantum well potential symmetric. The Dresselhaus
effect becomes rather different in a wide modulation-doped
quantum well compared to a square well.1 In Fig. 2�a� we
display the energy spin splitting as a function of wave vector.
It is seen that it first rapidly increases but then decreases, and
for larger wave vectors �approximately above the Fermi
wave vector kF�, it stays rather constant at a low value. Our

results imply that the change in spin splitting between a sym-
metric and an asymmetric wide modulation-doped quantum
well normally is dominated by the Rashba effect. In Figs.
2�b� and 2�c� we show the k dependence of the x and y
components of the expectation value of the spin vector.1 The
absolute value of the x component decreases rapidly and be-
comes small above kF. This is in contrast to a square well
where it stays constant.41 The y component has the reverse
behavior: small for small k values and increases rapidly near
kF. Thus the spin direction changes from the x direction to
the y direction as k increases along the �10� direction. For

TABLE I. Input parameters used in the present work for an
In0.74Ga0.26Sb quantum well surrounded by In0.7Al0.3Sb barriers. We
give the “true” Luttinger parameters although modified Luttinger
parameters are included in the 8�8 matrix.1 The conduction-band
offset �Ec and valence-band offset �Ev between the two materials
are also given. Mass parameters are given in units of the free-
electron mass. Energies are given in electron volts. The coefficients
C and B8v

+ describing the Dresselhaus effect are given in eV Å and
eV Å2, respectively. We use the reasonable approximations B7v
�B8v

+ and B8v
− �0 that are justified by Table 6.3 in Ref. 1. Finally

we give the static dielectric constant 	.

Parameter InGaSb InAlSb

me 0.015 95 0.042 21


1 23.87 11.652


2 10.01 4.110


3 11.34 5.388

Ep 24.27 21.92

Eg 0.3068 0.790

� 0.777 0.717

C −0.006 715 −0.006 524

B8v
+ 20.596 7.21

�Ec 0.3344

�Ev 0.1487

	 17.17 16.00

(a)

(b)

(c)

FIG. 2. �a� Energy subband splitting for an 80 nm n-type
modulation-doped symmetric InGaSb quantum well. The wave vec-
tor is in the �10� direction in the two-dimensional Brillouin zone.
��b� and �c�� k dependence of the x and y components, respectively,
of the spin vector. Here both the spacer layer widths are 45 nm and
the electron density is 6.8�1011 cm−2.
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sufficiently large k we find a localization of the wave func-
tions to one of the interface regions, similarly to what is
shown below for the Rashba effect.

In a quantum well with small asymmetry, the Rashba
splitting can be comparable to the splitting between the sym-
metric and the antisymmetric states. In addition to a gradual
transfer of wave-function amplitude to one of the interface
regions, there will be interesting anticrossing phenomena,
especially when k is in the �11� direction.42,43 In Table II we
show the spin splittings for some values of the bias in vari-
ous cases. Especially for small bias the expectation values
can be quite different and even have opposite signs for the
two spin subbands. This presents a fundamental problem in
applying Eqs. �5� and �6� for more complex situations. Many
downfolding approaches lead to expectation values of the
electric field with respect to a subband rather than a spin
subband. If one wants to treat this effect perturbatively, it
would be appropriate to apply degenerate perturbation
theory. However, since we find that a small perturbation can
give rise to a substantial effect on the wave functions, the use
of perturbation theory appears dubious in the present case.
The anticrossing phenomena including the contrasting results
for k in the �11� direction have been examined more closely
elsewhere.42,43

In this paper we focus on the case with a fairly small but
sufficiently large asymmetry that each wave function be-
comes almost completely localized to one of the interface
regions. In the present case a bias over the quantum well
�henceforth denoted quantum well bias �QWB�� of 33 mV is
sufficient to reach this situation. It corresponds to a rather
small average electric field of 4.1 kV/cm �last row in Table
II�. It gives an energy separation of 9.2 meV at k=0 between
the lowest and next lowest subband pairs. It is shown in Fig.
3�b� that it gives a spin splitting that is an order of magnitude
larger than for the same uniform electric field. By comparing
columns 2 and 7 in Table II, we can observe for different
biases how the spin splitting is enhanced in modulation-
doped quantum wells compared to undoped quantum wells
with the same QWB. For the largest �last row� and the small-
est biases �first row�, we have an enhancement by a factor of
14 and 60, respectively.

We thus have a modified and very efficient mechanism to
apply a moderate QWB, and take advantage of the much

stronger built-in electric field to obtain a substantial Rashba
splitting. A qualitative explanation of the enhancement can
be seen in Fig. 3�a� where the ground-state wave function
has become localized to one of the interface regions. There
the electric field becomes quite strong and it is this local field
that determines the size of the spin splitting.

We note in Table II than we can reach a spin splitting of
2.6 meV at a wave vector of 0.13 nm−1. According to Eq. �5�
this corresponds to value as large as 200 meV Å for the
Rashba parameter �. This compares well in comparison to
experimentally determined � values.20,28,29 In addition, it is
essential that in our case this � value is reached with a mod-
erate bias.

We will now investigate if we can reproduce this strong
enhancement using the common Rashba model together with
Eq. �6�. As a first step we insert into Eq. �6� the expectation
value of the electric field in the well and barriers ignoring
any interface contributions �columns 3 and 4�. It can be ex-
pected to be enhanced by the localization of the wave func-
tion. In the last row of Table II the spin subbands have al-
most the same expectation value. However, this procedure
gives a clearly smaller Rashba splitting than obtained in our
numerical calculations. We have found that inclusion of BIA
has a small effect on the results in Table II.

As a next step it is natural to examine if the discrepancy
can be explained by interface contributions. After solving the
multiband problem in our approach, it is straightforward to
evaluate the expectation value of the electric field in the lay-
ers and that of the steps at the interfaces separately. If the
Rashba model Eqs. �5� and �6� is to be used, the most rea-
sonable approach seems to be to follow Ref. 27 and take the
expectation value of the valence-band profile. The interface
contributions involve the derivative of the discontinuities in
the valence bands and yield Dirac delta functions in the in-
tegrals that nevertheless can be evaluated. The result be-
comes

���interfaces = �Ev�	��− a�	2 − 	��a�	2�/e , �7�

where the interfaces are taken at z= �a. It is seen in Table II
that the expectation values are increased by about 50% when
the contribution from the interface steps is added. This is
compatible with the analytical results by Yang and Chang32

TABLE II. Spin splittings for different electric fields in various approximations. �ave is the voltage across
the quantum well divided by the well width and �Eave is the energy spin splitting obtained by inserting this
electric field into Eq. �6�. ��E�i

excl are the results when the expectation value of the electrostatic field in the
layers excluding interface contributions �see text� averaged over filled states for spin subband i is inserted
into Eq. �6�. ��E�i are the corresponding results with inclusion of interface contributions from the valence-
band offsets �Eq. �7��. �Enum is our numerical result with the spin splittings evaluated at the Fermi wave
vector kF�0.13 nm−1. The last row corresponds to the situation in Fig. 3.

�ave

�kV/cm�
�Eave

�meV�
��E�1↓

excl

�meV�
��E�1↑

excl

�meV�
��E�1↓
�meV�

��E�1↑
�meV�

�Enum

�meV�

0.297 0.012 0.862 −0.292 1.384 −0.495 0.720

1.242 0.052 1.112 0.968 1.768 1.491 2.158

3.012 0.135 1.357 1.328 2.145 2.040 2.498

4.137 0.190 1.485 1.459 2.336 2.231 2.646
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who concluded that the interface contribution to the Rashba
splitting was typically a factor of two smaller than that of the
electric field in the quantum well.

We have also calculated the expectation value of the
conduction-band profile to obtain the “average electric
field.”26 The contribution from the conduction-band offsets is
of opposite sign compared to that from the electric field in
the quantum well and results in a net contribution of 10%–

15% of our numerical value. In Ref. 26 a contribution of
only 3% was obtained.

To examine the interface effect we have also replaced the
barrier material by In1−xAlxSb of different compositions. This
changes the conduction- and valence-band offsets, the effec-
tive electron mass, and the nonparabolicity. If the interface
contribution were very sensitive to these parameters, this
should give a clear effect. However, in our calculations we
only find a minor change. For example, if we change the
barrier material from In0.7Al0.3Sb to In0.5Al0.5Sb �ignoring
introduced strain�, we obtain a change of the spin splitting by
about 1%.

The failure to reproduce our numerical results using Eqs.
�5� and �6� and various expectation values raises the question
if more elaborate downfolding approaches can yield better
agreement or if approaches using expectation values simply
are insufficient. A more comprehensive comparison between
various multiband and downfolding approaches will be pub-
lished elsewhere. It is conceivable that two potentials having
the same expectation value of the electric field can yield
different Rashba spin splittings and that the spatial variation
in the electric field must be taken into account in a multiband
approach rather than basing the calculations on some kind of
expectation values.

IV. IMPLICATIONS FOR SPINTRONIC DEVICES

The strong enhancement of the Rashba splitting described
in Fig. 3 due to modulation doping can be expected to have
important implications for several spintronic devices based
on the Rashba effect. For the moment we focus on one of the
best known spintronic devices, the spin transistor proposed
by Datta and Das,7 including proposed modifications of it.
We will return to the problems encountered to make it func-
tion and first address the question: If it can be made to func-
tion, does it have the potential to become competitive with
state-of-the-art conventional transistors? Then it is not only
essential that one can achieve a large wave vector splitting
�k of a spin-split subband but also that it can be done with a
small bias. As a benchmark for the performance, we choose
the switch energy for Si MOSFETs where 3 aJ has been
projected.44

We have previously45 approximated the switch energy for
n-type and p-type spin transistors by CV2, where C is the
capacitance of a QW structure surrounded by two gates and
V is the applied bias between them. �We have included here
turning on and off of the device, which cancels a factor 1 /2�.
We then concluded that n-type spin transistors with the origi-
nal design would have problems in becoming competitive
with conventional transistors unless fundamentally new ideas
were presented.

A similar conclusion was independently drawn by Ban-
dyopadhyay and Cahay.46 They assumed that a spin transistor
must be based on a one-dimensional channel and that only
the lowest one-dimensional subband should be filled. How-
ever, this resulted in an anomalously small carrier density,
3�1010 cm−2 or 3�105 cm−1. This made their comparison
very unfavorable for the spin transistor.

A more recent comparison with conventional transistors
has been made by Hall and Flatté47 for a modified spin tran-

FIG. 3. �Color online� �a� Potential, squared wave function and
charge density, and �b� subband dispersion along the �10� direction
for the lowest subband pair in an 80 nm InGaSb quantum well. The
quantum well bias �potential difference between the interfaces� is
33 mV. Dashed lines: uniform electric field; solid lines: modulation-
doped quantum well with an electron density of 6.8�1011 cm−2.
For the latter case the dotted line shows the charge distribution.
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sistor. It is not based on the Rashba effect but rather on
gate-induced spin relaxation. A crucial factor in their ap-
proach seems to be efficiency of the gate-induced spin relax-
ation compared to other spin-relaxation mechanisms. Their
comparison was quite favorable for the spin transistor. They
estimated a switch energy of 0.5 aJ which is similar to what
we find below for our modified spin transistor. The perfor-
mance of this transistor has been subject to some controversy
concerning the need for very efficient spin injection.48 Since
the Hall-Flatté spin transistor is based on another mechanism
than the spin precession considered here, it is beyond the
scope of the present paper to enter this debate.

Utilizing the built-in electric field in the modulation-
doped quantum well, one can achieve a given �k with a
QWB that is an order of magnitude smaller than with a uni-
form electric field. If we only consider the lowest spin sub-
band pair and follow the approach of Ref. 45, we obtain a
switch energy of 0.4 aJ in the modulation-doped case, and 35
aJ in a spin transistor with the same length and uniform
electric field. The former figure compares very well with
present state-of-the-art transistors. Thus the utilization of the
mechanism proposed by us could make a substantial differ-
ence for the competitiveness of spin transistors. We have
calculated the additional contribution to the switch energy
from the redistribution of carriers in the QW, taking the
k
-dependent wave functions into account but found that it
only increases by about 20%.

A complication with our design is that the second subband
pair with the opposite sign of �k and spin precession direc-
tion is also filled. This does not prevent the possibility that
the spins at the two interfaces can have made a precession by
the angle � but in opposite directions on the arrival to the
drain where the transmission becomes low.

It has been demonstrated that one can contact the electron
gases in a double quantum well structure separately.49 It
seems feasible that also the interface regions of a wide
modulation-doped quantum well can be contacted separately
which opens up interesting possibilities occurring from the
controllable properties of modulation-doped quantum wells.

One can envision practical problems to create a perfectly
symmetric quantum well structure corresponding to the on
state of a spin transistor. One possibility is a double-gate
structure in which the total carrier concentration and the
asymmetry can be controlled separately. In Ref. 50 the back
gate voltage was of the order 100 V, which is not very prac-
tical for devices. An alternative design45 is to have a heavily
doped semiconductor layer just below the quantum well
structure. In this way a larger fraction of the applied voltage
falls over the quantum well.

We now turn to the problem of making a spin transistor
function, possibly with some modification of the original
idea.7 A fundamental problem is that the Rashba effect can
be described in terms of an effective magnetic field that is
perpendicular to both the electric field and the direction of
motion for the carrier.1 Even spin-independent scattering
leads to a change of the direction of the velocity and thus the
axis of the spin precession. It can also be difficult to inject all
the carriers in the same direction. In the case we consider in
Fig. 3, we obtain a precession length L=� /�k�1 m. Bal-
listic transport over such a distance requires rather low tem-

peratures. An idea with the purpose of balancing the Rashba
and Dresselhaus effect51 by setting �=� in the linearized
model makes diffusive transport possible but at the price of a
substantial transmission in the off state. One-dimensional
channels have been proposed in which the carriers are more
or less forced to move in the same direction. As mentioned
above the small energy separation between the one-
dimensional subbands leads to multimode transport for real-
istic carrier densities. This is not a prohibitive problem as has
been demonstrated by Łusakowski et al.52

A fundamental problem is that in the approach with the
Rashba term, which is a reasonable approximation for elec-
trons in an undoped quantum well, the Rashba splitting �k is
proportional to the Rashba coefficient � but the spin deco-
herence rate becomes proportional to �2 �Ref. 3�. A large � is
beneficial for a rapid spin precession and corresponds to a
short gate length in a spin transistor but this advantage is
thus offset by the shorter spin decoherence time.

An alternate approach has been presented by Bandyo-
padhyay and Cahay.53 Instead of relying on the Rashba ef-
fect, they propose using the Dresselhaus effect in a structure
with a split gate and a parabolic potential. The main reason
was to avoid an in-plane magnetic field in the semiconductor
from the magnetized source and drain. However, the main
requirement for spin precession is that their magnetization is
perpendicular to the effective magnetic field in the channel.
Thus it can be either along the channel �as drawn in Ref. 53�
or perpendicular to the layers �as drawn in Ref. 41�. The
mechanism in the transistor based on the Dresselhaus effect
is changing the bias of the split gate and then it is assumed
that the curvature of the parabolic potential changes. Nu-
merical calculations54 have indicated that, however, the ef-
fect of changing the bias is mainly that the potential becomes
flatter in the middle when the channel starts to fill while the
curvature of the side walls does not change much.

An alternative that has not been given much attention so
far is a p-type spin transistor. With a suitable design we have
shown that one can obtain a large �k with an electric field as
small as 2 kV/cm.33 The corresponding precession length is
only 40 nm and the possibility of having ballistic transport
over such a short distance clearly seems feasible. The strong
spin-orbit interaction including its dependence on a gate
voltage has recently been demonstrated for a p-type GaAs/
AlGaAs heterostructure by Grbić et al.55 According to our
calculations33 even stronger spin splitting can be achieved
for higher hole densities. Furthermore, the strong anisotropy
of hole subbands can possibly be utilized to get a preferred
direction of motion without lateral confinement. For holes
there is no simple relation between spin precession and spin
decoherence rates. Estimates based on experimental determi-
nations indicate that the spin decoherence time can be much
longer than the transit time. Because of the strongly nonpa-
rabolic hole subbands and their mixed heavy-hole and light-
hole character, rather cumbersome numerical calculations ap-
pear necessary for a more accurate prediction of the transport
properties. For small k analytical expressions proportional to
k3 for the Rashba splitting in heavy-hole subbands have been
derived.1 However, it has been found that the largest spin
splittings occur beyond the range of validity of this model.33

A relevant question is if one can combine the supereffi-
cient Rashba effect for holes with the enhancement in
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modulation-doped quantum wells presented here. However,
we have shown that for p-type spin transistors the largest
Rashba splitting is obtained for quite small electric fields
��5–10 kV /cm� while the effect of modulation doping is to
apply a small bias to utilize the built-in electric field of the
order 50–100 kV/cm for which the Rashba effect for holes is
reduced.

A well-known problem is that the conductivity mismatch
between metal and semiconductor severely limits the spin
injection efficiency.56 A proposal by Rashba is having tunnel
barriers between the metal contacts and the semiconductor.57

A fundamental problem recently pointed out by Fert et al.58

is that this decreases the transmission coefficient and in-
creases the dwell time such that it can become long com-
pared to the spin dephasing time in semiconductor-based
spin transistors. They instead proposed using carbon nano-
tubes. It is beyond the scope of the present paper to evaluate
the competitiveness of semiconductors vs carbon nanotubes
for spintronic devices. However, we would like to point out
that this problem occurs for injection from a spin-polarized
contact but other solutions in the form of spin filters have
been proposed. A particularly interesting idea is to put a
magnetic layer on top of a layered semiconductor structure
such that the in-plane fringe fields act as a spin filter.59 The
appealing aspect of this solution is that current flows in the
channel below the metal without passing any interfaces
where the spin polarization can be reduced.

V. DISCUSSION AND CONCLUSIONS

We have implicitly assumed coherence of the wave func-
tion across the 80 nm QW with a high and broad barrier in
the middle. Whether this coherence actually prevails should
depend on the sample quality. This system with our predicted
effects seems ideal for further studies of this fundamental
problem.

The self-consistent calculations have so far been per-
formed in the Hartree approximation. For studies of spin
properties it is conceivable that exchange and correlation can
give significant effects, especially in anticrossing situations.
This is planned to be examined in future publications.

In our multiband approach the well established Burt-
Foreman boundary conditions12–14 are behind any interface
contribution. The exact relation behind this approach and
what is obtained by folding down the adjacent bands to the
conduction band, as in Refs. 26 and 27, is not trivial and
remains to be analyzed. Our approach is in our opinion more
sound than one-band approaches that are based on approxi-
mations whose accuracy is difficult to determine. Further-
more, the analytical expressions26,27 are based on consider-
ation of the interfaces, where the EFA has its main weakness
and where the actual gradual but rapid potential variation
near an interface is replaced by a sharp step. Especially when
the interfaces give substantial contributions, it is likely that
different operator orderings can influence the results consid-
erably. Calculations with downfolding procedures for wide
modulation-doped quantum wells and comparison with the
present results would be valuable in evaluating how close the

results of these approaches are in a nontrivial case such as
this.

It has recently been predicted that the spin Hall effect can
be strongly enhanced at a subband anticrossing in a bilayer
system.60 There the potential was not specified but the
Rashba coefficients were allowed to differ in the two layers.
For further investigations of this effect, modulation-doped
quantum wells seem useful due to the possibility of control-
ling the degree of interaction between the two electron gases
and each of the interface fields.

In conclusion we have analyzed the foundations of the
envelope function approximation and concluded that, while
the Dresselhaus effect should be included as k-dependent
terms in a matrix, the proper inclusion of the Rashba effect is
adding the macroscopic potential along the diagonal in a
multiband approach. This has given good agreement with
experiment for two-dimensional hole gases.21,23,24 The com-
monly used Rashba term �5� is a hybrid including both po-
tential and k. The proper derivation of such a term within the
framework of the EFA with proper boundary conditions12–14

deserves to be examined more closely.
For symmetric wells with Dresselhaus effect only, we find

interesting effects in a modulation-doped quantum well that
are qualitatively different from those in a square well.

We have found that, with a nonuniform electric field, in-
sertion of some kind of expectation value or other average
into Eq. �6� underestimates the Rashba splitting. Further-
more, this expectation value is not always well-defined for a
subband because it can differ substantially between its spin-
split components. We have found that the contribution from
the interfaces is about half of that from the electric field in
the layers for the potential we have considered.

We have demonstrated a very efficient switching mecha-
nism of the Rashba splitting in wide modulation-doped quan-
tum wells. One can use a bias corresponding to a moderate
average electric field and still get a Rashba splitting typically
enhanced by an order of magnitude due to the built-in local
electric field in the interface region. The switching mecha-
nism is based on localization of each wave function to one
interface region with a barely sufficient bias. A switching
mechanism based on anticrossing in slightly asymmetric
quantum wells42,43 is not included here but will be examined
further elsewhere.

The enhancement of the efficiency of the Rashba effect
should be valuable for different spintronic devices. We here
have focused on spin transistors of the type proposed by
Datta and Das.7 With our modification we find that it can get
a potential to outperform conventional transistors. We have
also discussed some remaining obstacles to make such spin
transistors function.
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